

As a starting point for our design we used the Rhino plug-in BESO 3D. This program calculates the most optimal structure within the envelope and the given parameters. We started with the given measurements of 90*30*15 cm and added four fixed load bearing points and a force in the middle. During the optimalisation, the program calculates which parts of the structure are obsolete for carrying the load. Based on the outcome we created a new, more fine-tuned shape, so that the formwork would be more specific for pouring the concrete. We translated the optimal shape into a smooth Rhino model. We then squished the model to use it as a reference for cutting the fabric into a suitable textile formwork for pouring the concrete.

design team

Jorik Bais 4151143 Koen de Veth 4087917 Shijie Zhang 4404106 Yanthe Boom 4139496 Luuk van Vliet 1526030

TEKTONIEK workshop Fabric Formwork & ESO

7-10 April 2015 - TU Delft

Cement&BetonCentrum TUDelft bureoubakker 5weber

THREE-LEGGED SPAN

FORM FOLLOWS FABRIC

An experimental design for a horizontal span out of concrete. This shape is based on physical models in a process of trial and error and the results of structural optimalisation software. The holes

were necessary in the search for a lighter model. Designing by making sketches was very important for the esthetics of the endresult. The envelope is 90 x 15 x 30 cm and the first concept was a span with

multiple fins of concrete of which this three-legged span is a deduction. By sewing and pre-stressing the fabric mould we were able to make the formwork.

Evolution of ideas derived from the tests

Process

Holes using sewings or wood pieces

How to make curves?

Test for the final prototype

The framework fabric - foam - wood

1st Step Removing the wood

2nd Step On side and removing the fabric

3rd Step Last touches

MAKING 2014 - 15 / Q4

concrete pressure

Holes & stitches control the

FIETS LONGUE

Design Team

IREN KOOMEN 4064119
MAICOL CARDELLI 4402820
LIVIA GHIDONI 4432576
HUIYI QIAN 4402987

TEKTONIEK workshop Fabric Formwork & ESO

7-10 April 2015 - TU Delft

Cement&BetonCentrum TUDelft bureoubokker Sweber

WEAVING SHELTER

How much does a concrete fabric weight?

CONCEPT

The proposal is based on two elements: concrete and fabric. It is interesting the infinite number of forms that you can make with a fabric but it is also interested to investigate the idea of the fabric itself. If you see the fabric with a microscope you can understand its interesting structure. This structure could be made of concrete?

1 X

20 X

40 X

WEAVING PATTERN

CONCRETE CONNECTIONS

SPACES FOR LIGHT

VISUALIZATION

design team

Myriam Dautermann Andrea Govi Xiangyu Zheng Ruofan Gan Anna Koolen

TEKTONIEK workshop Fabric Formwork & ESO

7-10 April 2015 - TU Delft

TRIAL 1

TRIAL 2

FINAL

design team

Michael Raeburn (4432797) Giacomo Rizzi (4402545) Shao Shan (433261) Hannah Barth (4007239)

TEKTONIEK workshop Fabric Formwork & ESO

7-10 April 2015 - TU Delft

